The Use of Methylene Blue Adsorption Test to Assess the Clay Content of the Cappadocian Tuff

نویسنده

  • TAMER TOPAL
چکیده

Fairy chimneys formed within the Cappadocian tuft are important landforms. Some of them were dwelled in the past and contain valuable wall paintings. However, the tuff is chemically and physically deteriorated due to atmospheric effects. the chemical weathering of the volcanic glass of the tuft produces smectite-type clay mineral. Assessment of the clay content of the weathered zones developed within the tuft is essential to understand their engineering behaviour, and thus to take necessary precautions for the purpose of conservation. In this study, the clay content of the tuft is assessed by the "methylene blue adsorption test" using spot method. The method is based on the replacement of the natural cations of clays by methylene blue dye. The amount of the dye adsorbed by the clays is used to calculate first the cation exchange capacity of the tuft and then its clay content. Based on the test results, the clay content of the tuft ranges between 2% and 14%. It is higher adjecent to joints and lower where lichen cover exists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Studies, Response Surface Methodology and Molecular Modeling for Optimization and Mechanism Analysis of Methylene Blue Dye Removal by Different Clays

In this work, three types of natural clays including kaolinite, montmorillonite, and illite with different molecular structures, as adsorbents, are selected for the removal of methylene blue dye, and their performance is investigated. Also the optimization and the analysis of the dye adsorption mechanism are performed using the response surface methodology, molecular modeling, and experimental ...

متن کامل

Kinetics of photocatalytic degradation of methylene blue by ZnO-bentonite nanocomposite

The present study reports, the synthesis of ZnO-bentonite nanocomposite by the incorporation of ZnO with bentonite clay. The nanocomposite was characterised by XRD and SEM. ZnO-bentonite was effectively used for removal of Methylene Blue (MB). Removal of MB takes place by photocatalytic degradation and adsorption. Photocatalytic degradation of MB occurs by advanced oxidation process. The factor...

متن کامل

Removal of methylene blue from aqueous solutions using modified clay

Introduction: Discharging of industrial colored wastewaters especially into aqueous environments can cause adverse effects on aquatic life due to their toxic natures. In this study, montmorillonite modified by hexadecyltrimethyl ammonium bromide (HDTMA-Mt) was used for the adsorption of methylene blue (MB). Materials and Methods: The influence of surfactant loading rate, contact time, pH, adso...

متن کامل

Investigation of performance of bimodal/functionalized mesoprorous silica nanoparticles on the adsorption of methylene blue from aqueous solution

In this study, bimodal mesoporous silica, i.e. UVM-7, was synthesized and functionalized withsulfonic acid and characterized using XRD, nitrogen physisorption, SEM, TEM and acid/basetitration. The results displayed that bimodal mesopore structure was firmly formed and acidicfunctional groups were grafted on the surface of the UVM-7. The concentration of the acidicfunctional groups was determine...

متن کامل

Effect of activation factors on adsorption of cationic dye, methylene blue, by activated bentonite

The aim of this investigation was to study the relationship between activation factors and adsorption of cationic dye, methylene blue MB, by activated bentonite. The adsorption index was investigated as a function of acid type, time and temperature. A commercial bentonite was selected as a starting material and the effect of heat treatment on MB adsorption were determined in a batch setup. Thou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015